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1 - Link stream formalism to model
temporal data



> Definition — Graph

Graph formalism

Example
e Vertices: a, b, ..., g Contacts between people, brain
e Interactions: edges networks, ...
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> Definition — Graph

Graph formalism

Example
e Vertices: a, b, ..., g Contacts between people, brain
e Interactions: edges networks, ...

— What about temporal interaction ?
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> Definition — Link stream
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Link stream formalism

e Vertices: a, b,...,g
e Time period: [0, 18]

e Interactions: temporal edges
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Link stream formalism

e Vertices: a, b, ..., g

e Time period: [0, 18]

e Interactions: temporal edges
e c,d linked over [1,13]
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Link stream formalism

e Vertices: a, b,...,g
e Time period: [0, 18]
e Interactions: temporal edges

e c,d linked over [1,13]
e d,f linked over [4,9]
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Link stream formalism

e Vertices: a, b,...,g

e Time period: [0, 18]
e Interactions: temporal edges

e c,d linked over [1,13]
e d,f linked over [4,9]
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> Definition — Link stream
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Link stream formalism

e Vertices: a,b,...,g Advantages
e Time period: [0, 18] e deals directly with the stream of
e Interactions: temporal edges interactions
e c,d linked over [1,13] e no arbitrary choice of time scale
O 7 i) ovear | €] e time is continuous
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2 - Describing temporal data by
finding communities in link streams



> Communities in static neworks

Communities: sets of vertices

e Densely connected inside

e Sparsly connected outside

AT

Palla et al. 2005
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> Communities in static neworks

Communities: sets of vertices
e Densely connected inside

e Sparsly connected outside

Interest:

e Locate areas of high interaction

density

e Understanding the organizational
structure of interactions

Palla et al. 2005
e Zoom in / out

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> Clique Percolation Method in static networks (CPM)

k-clique
Set of k nodes all connected
to each other.
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> Clique Percolation Method in static networks (CPM)

k-clique
Set of k nodes all connected
to each other.

Grouping rule
Two k-cliques are adjacent if they share kK — 1 nodes.
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> Clique Percolation Method in static networks (CPM)

k-clique
Set of k nodes all connected
to each other.

Grouping rule
Two k-cliques are adjacent if they share kK — 1 nodes.

Advantages of the definition
e Definition local
e Deterministic; no need of heuristic function

e Communities can overlap
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> First extension of CPM to Temporal Graphs (DCPM)

Question
How to extend CPM communities to temporal networks ?

CPM communities in temporal graphs: Palla et. al 2007

= Communities that evolve from one time to the next
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> First extension of CPM to Temporal Graphs (DCPM)

Question
How to extend CPM communities to temporal networks ?

CPM communities in : Palla et. al 2007

= Communities that evolve from one time to the next

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> LSCPM: CPM in Link Streams

CPM in temporal graphs

a \ C—
b ) 4): e Computing communities at each
c Yy E—— : ) )

ddo g ddi time step: time consuming;

e b

f );)t }_):——_ e Some temporal data expected to
g

01 2 3 45 6 7 & 9 1011121314 15 16 17 tme be grouped are not.

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> LSCPM: CPM in Link Streams

CPM in temporal graphs

a ———
b } 4): e Computing communities at each
LR e . . .
ddde— i — time step: time consuming;

e {n=g A\

£ogd o e Some temporal data expected to
PR B s Y B

01 2 3 45 6 7 & 0101112131415 16 17 time be grouped are not.

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> LSCPM: CPM in Link Streams

CPM in temporal graphs

a \ ———
b ) 4): e Computing communities at each
¢y y | E— _ _ _
ddde— i — time step: time consuming;

e {irg

£ogd o R e Some temporal data expected to
¢ Izl

01 2 3 45 6 7 & 0101112131415 16 17 time be grouped are not.

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> LSCPM: CPM in Link Streams

CPM in temporal graphs
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CPM in link stream (LSCPM)

= Grouping rule with k = 3:
k-clique in link stream

a \ e

b
k nodes and [tp, t1] such that all ¢ty [
nodes are connected to each other dod 3 i

e f
over [to, t1]. S ) ———

e T v

O 1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 17 time

A. BAUDIN®, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams



> LSCPM: CPM in Link Streams

CPM in temporal graphs

a -\ L —

b ) ﬂ: e Computing communities at each
¢ % e — i ) ]

do 4 I time step: time consuming;
R

£ogd o R e Some temporal data expected to
g 4 V___ d

01 2 3 45 6 7 & 0101112131415 16 17 time be grouped are not.

CPM in link stream (LSCPM)

= Grouping rule with k = 3:
k-clique in link stream

a 1
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CPM in temporal graphs
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3 - Experiments on real datasets




> An algorithm efficicent and consistent

Efficiency — computation time

k=3 k=4
Link stream Nb links |S. of art LSCPM |S. of art LSCPM
Households 2,136 1.5s 0.1s 1.0s 0.1s
Highschool 5,528 3.6s 0.1s 1.9s 0.1s
Infectious 44,658 |10min49s 1.4s 6minl2s 3.3s
Foursquare 268,472 | 3h01lmin 9.2s 2h28min 43s
Wikipedia 39,953,380 - 13min44s - 15min29s
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> An algorithm efficicent and consistent

Efficiency — computation time

k=3 k=4
Link stream Nb links |S. of art LSCPM |S. of art LSCPM
Households 2,136 1.5s 0.1s 1.0s 0.1s
Highschool 5,528 3.6s 0.1s 1.9s 0.1s

Infectious 44,658 |10min49s 1.4s 6minl2s 3.3s
Foursquare 268,472 | 3h01lmin 9.2s 2h28min 43s
Wikipedia 39,953,380 - 13min44s - 15min29s

Consistency with metadata
Highschool: 70% of communities are on one class, 23% on two
classes, 6% on three classes, 1% on four classes.
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> Insights on temporal communities

A highschool link stream community
LSCPM community

Vertices

9h04 oh34 10h04 10h34
Time
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> Insights on temporal communities

A highschool link stream community

State-of-the-art communities
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Time

— Gather more information over time
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> Insights on temporal communities

A highschool link stream community
Metadata (classes)

Vertices

8h34 9h04 9h34 10h04 10h34
Time

— Gather more information over time

— Relate metadata information
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4 - Conclusion: links with BCI ?

— Communities in link streams
e (Re)organization of interactions over time
e Target communities that provide temporal information

e Target vertices that play a central role (or not)
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4 - Conclusion: links with BCI ?

— Communities in link streams
e (Re)organization of interactions over time
e Target communities that provide temporal information

e Target vertices that play a central role (or not)

— Link stream
e Study at different time scales
e Online interactions

e Multilayer link stream 7?...
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LSCPM: finding communities in link streams

Thanks for your attention! Any questions?

Code available at:
https://gitlab.lip6.fr/baudin

Alexis Baudin — alexis.baudin@lip6.fr
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Supplementary material

Observation
As k increases, communities split.

Example:
k=3

Vertices

Vertices
Vertices

8 10 12 14 0O 2 4 6 8 10 12 14

0 2 4 6 8
Time (hours) Time (hours)

Time (hours)

= Refining communities; “core”

= Sub-categorizing data
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Question
What is a community in a link streams 7

— Sets of temporal nodes that are

e Densely connected inside

e Sparsly connected outside
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Importance of vertices
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0 10° 10! 102

Number of communities each vertex belongs to.

Foursquare dataset
— Nodes very central (Pennsylvania train station, ...)

— Nodes not in any community (offices, ...)
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Link stream
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Link stream

Time varying graphs
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Link stream

Time varying graphs
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Link stream Time varying graphs
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Link stream Time varying graphs
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Link stream Time varying graphs
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