LSCPM: finding communities in Link Streams by Clique Percolation Method

Alexis ${\rm BAUDIN}^*,$ Lionel TABOURIER and Clémence ${\rm MAGNIEN}$ June 21st, 2023

Lip6, Sorbonne Université, CNRS, Complex Networks

- 1 Link stream formalism to model temporal data
- 2 Describing temporal data by finding communities in link streams
- 3 Experiments on real datasets
- 4 Conclusion: links with BCI ?

1 - Link stream formalism to model temporal data

> Definition – Graph

Graph formalism

- Vertices: *a*, *b*, ..., *g*
- Interactions: edges

Example

Contacts between people, brain networks, ...

> Definition – Graph

Graph formalism

- Vertices: *a*, *b*, ..., *g*
- Interactions: edges

Example

Contacts between people, brain networks, ...

\rightarrow What about temporal interaction ?

A. Baudin^* , L. TABOURIER and C. MAGNIEN

a b c d e f g <u>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 time</u>

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - *c*, *d* linked over [1, 13]

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - *c*, *d* linked over [1, 13]
 - *d*, *f* linked over [4,9]

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - *c*, *d* linked over [1, 13]
 - *d*, *f* linked over [4,9]
 - ...

Link stream formalism

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - c, d linked over [1, 13]
 - *d*, *f* linked over [4,9]

Advantages

- deals directly with the stream of interactions
- no arbitrary choice of time scale
- time is continuous

2 - Describing temporal data by finding communities in link streams

> Communities in static neworks

Communities: sets of vertices

- Densely connected inside
- Sparsly connected outside

Palla et al. 2005

> Communities in static neworks

Communities: sets of vertices

- Densely connected inside
- Sparsly connected outside

Interest:

- Locate areas of high interaction density
- Understanding the organizational structure of interactions
- Zoom in / out

Palla et al. 2005

k-clique

Set of *k* nodes all connected to each other.

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

k-clique

Set of *k* nodes all connected to each other.

Grouping rule

Two k-cliques are adjacent if they share k - 1 nodes.

Advantages of the definition

- Definition local
- Deterministic; no need of heuristic function
- Communities can overlap

How to extend CPM communities to temporal networks ?

How to extend CPM communities to temporal networks ?

How to extend CPM communities to temporal networks ?

How to extend CPM communities to temporal networks ?

How to extend CPM communities to temporal networks ?

How to extend CPM communities to temporal networks ?

CPM in temporal graphs

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

CPM in temporal graphs

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

CPM in temporal graphs

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
 Some temporal data supported to
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

 $\Rightarrow Grouping rule with k = 3:$

Computing communities at each time step: time consuming;

• Some temporal data expected to be grouped are not.

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

• Computing communities at each time step: time consuming;

• Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

time step: time consuming;Some temporal data expected to

Computing communities at each

be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

CPM in temporal graphs

CPM in link stream (LSCPM)

k-clique in link stream

k nodes and $[t_0, t_1]$ such that all nodes are connected to each other over $[t_0, t_1]$.

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

\Rightarrow Grouping rule with k = 3:

3 - Experiments on real datasets

Efficiency – computation time

		k = 3		k = 4	
Link stream	Nb links	S. of art	LSCPM	S. of art	LSCPM
Households	2,136	1.5s	0.1s	1.0s	0.1s
Highschool	5,528	3.6s	0.1s	1.9s	0.1s
Infectious	44,658	10min49s	1.4s	6min12s	3.3s
Foursquare	268,472	3h01min	9.2s	2h28min	43s
Wikipedia	39,953,380	-	13min44s	-	15min29s

Efficiency – computation time

		k = 3		k = 4	
Link stream	Nb links	S. of art	LSCPM	S. of art	LSCPM
Households	2,136	1.5s	0.1s	1.0s	0.1s
Highschool	5,528	3.6s	0.1s	1.9s	0.1s
Infectious	44,658	10min49s	1.4s	6min12s	3.3s
Foursquare	268,472	3h01min	9.2s	2h28min	43s
Wikipedia	39,953,380	-	13min44s	-	15min29s

Consistency with metadata

Highschool: 70% of communities are on one class, 23% on two classes, 6% on three classes, 1% on four classes.

A highschool link stream community

LSCPM community

A highschool link stream community

State-of-the-art communities

$\rightarrow\,$ Gather more information over time

A highschool link stream community

Metadata (classes)

- $\rightarrow\,$ Gather more information over time
- \rightarrow Relate metadata information

4 - Conclusion: links with BCI ?

4 - Conclusion: links with BCI ?

\rightarrow Communities in link streams

- (Re)organization of interactions over time
- Target communities that provide temporal information
- Target vertices that play a central role (or not)

4 - Conclusion: links with BCI ?

\rightarrow Communities in link streams

- (Re)organization of interactions over time
- Target communities that provide temporal information
- Target vertices that play a central role (or not)

\rightarrow Link stream

- Study at different time scales
- Online interactions
- Multilayer link stream ?...

Thanks for your attention! Any questions?

Code available at: https://gitlab.lip6.fr/baudin

Alexis Baudin - alexis.baudin@lip6.fr

Observation

As k increases, communities split.

- \Rightarrow Refining communities; "core"
- \Rightarrow Sub-categorizing data

Question

What is a community in a link streams ?

- \rightarrow Sets of temporal nodes that are
 - Densely connected inside
 - Sparsly connected outside

Importance of vertices

1.0 0.8 0.6 0.4 0.2 0.0 0 10^{0} 10^{1} 10^{2}

Number of communities each vertex belongs to.

Foursquare dataset

- \rightarrow Nodes very central (Pennsylvania train station, ...)
- $\rightarrow\,$ Nodes not in any community (offices, ...)

A. BAUDIN*, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams

Link stream

Link stream

Time varying graphs

Link stream

Time varying graphs

Temporal graphs

t = 1

Link stream

Time varying graphs

Temporal graphs

Link stream

Time varying graphs

Temporal graphs

Link stream

Time varying graphs

Temporal graphs

Link stream

Time varying graphs

Temporal graphs

