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Abstract

Motivation: The control of Boolean networks has traditionally focussed on strategies where the

perturbations are applied to the nodes of the network for an extended period of time. In this work,

we study if and how a Boolean network can be controlled by perturbing a minimal set of nodes for

a single-step and letting the system evolve afterwards according to its original dynamics. More pre-

cisely, given a Boolean network (BN), we compute a minimal subset Cmin of the nodes such that

BN can be driven from any initial state in an attractor to another ‘desired’ attractor by perturbing

some or all of the nodes of Cmin for a single-step. Such kind of control is attractive for biological

systems because they are less time consuming than the traditional strategies for control while also

being financially more viable. However, due to the phenomenon of state-space explosion, comput-

ing such a minimal subset is computationally inefficient and an approach that deals with the entire

network in one-go, does not scale well for large networks.

Results: We develop a ‘divide-and-conquer’ approach by decomposing the network into smaller

partitions, computing the minimal control on the projection of the attractors to these partitions and

then composing the results to obtain Cmin for the whole network. We implement our method and

test it on various real-life biological networks to demonstrate its applicability and efficiency.

Contact: jun.pang@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In control theory, a dynamical system is controllable if, through an

appropriate manipulation of a few parameters, it can be driven from

any initial state to any desired final state within finite time.

Although control theory is a mathematically highly developed

branch of engineering with applications to electric circuits, manufac-

turing processes, communication systems, robots etc., fundamental

questions pertaining to the controllability of complex biological net-

works have resisted rapid advances. The reasons for this are 3-fold.

First, biological networks tend to be large with an exponential in-

crease in combinatorial complexity with the addition of every par-

ameter or interaction which in turn effects their controllability. This

is often referred to as the ‘dimensionality problem’ (Hecker et al.,

2009). Secondly, such networks are highly non-linear with switch-

like interactions between the components. It is unclear how the

linear functions usually studied in traditional control theory could cap-

ture such dynamics (Tyson et al., 2001, 2003; Za~nudo and Albert,

2015). And finally, the notion of controllability in biological systems

is different from the classical definition of linear controllability. In

such systems, rather than controlling single states, the control of col-

lective dynamic behaviour may be more feasible (Wang et al., 2016).

The recent discoveries in cell reprogramming have rekindled the

interest in the control of cellular behaviour and biological systems in

general. Cell reprogramming is a way to change one cell phenotype

to another, allowing tissue or neuron regeneration techniques.

Current studies have shown that differentiated adult cells can be

reprogrammed to an embryonic-like pluripotent state or directly to

other types of adult cells without the need of intermediate reversion

to a pluripotent state (Graf and Enver, 2009; Sol and Buckley,

2014). This has led to a surge in regenerative medicine and there is a

growing need for the discovery of new and efficient methods for the

control of cellular behaviour. Such medicines target specific proteins

within the cellular systems aiming to drive it from any state to a

desired phenotype. This motivates the question of identifying mul-

tiple drug targets using which the network can be ‘controlled’, i.e.

driven from any state to any desired target. Furthermore, for the

feasibility of the synthesis of such drugs, the number of such targets

should be minimized. However, as already mentioned, biological
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networks are intrinsically large (number of components, parameters,

interactions, etc.) which results in an exponentially increasing num-

ber of potential drug target combination making a purely experi-

mental approach quickly infeasible. This reinforces the need for

mathematical modelling and efficient computational techniques.

Boolean networks (BNs), first introduced by Kauffman (1969),

are a popular and well-established framework for modelling gene

regulatory networks and their associated signalling pathways. Its

main advantage is that it is simple and is yet able to capture the im-

portant dynamical properties of the system under study (D’haeseleer

et al., 2000), thus facilitating the modelling of large biological sys-

tems as a whole. The BN is assumed to evolve dynamically by mov-

ing from one state to the next governed by a Boolean function for

each of its components. The steady state behaviour of a BN is given

by its subset of states called attractors to one of which the dynamics

eventually settles down. In biological context, attractors are

hypothesized to characterize cellular phenotypes (Kauffman, 1969)

and also correspond to functional cellular states such as prolifer-

ation, apoptosis, differentiation, etc. (Huang, 2001). The control of

a BN therefore refers to the reprogramming/changing of the parame-

ters of the BN (functions, values of variables, etc.) so that its dynam-

ics eventually reaches a desired attractor or steady state.

The control of linear networks is a well-studied problem

(Kalman, 1963) and such control strategies have been proposed

over the years. Recent work on network controllability has shown

that the control and reprogramming of intercellular networks can be

achieved by a small number of control targets (Kim et al., 2013). The

control of such networks can have two objectives: to drive the dynam-

ics to (i) a single desired target attractor of the network irrespective of

the current state. We shall call such a control target control or TC, (ii)

any attractor of the network irrespective of the current state. We shall

call this type of control full control or FC.

Now, biological networks (both intracellular and intercellular)

are intrinsically non-linear and the strategies developed for the con-

trol of linear networks do not directly apply to these networks.

Moreover, networks with non-linear dynamics are arguably more

complex with many feed-forward and feedback loops for both acti-

vation and inhibition. This might explain why there has not been a

lot of work on the control problem for non-linear networks. For the

target control problem, Kim et al. (2013) developed a method to

identify the so-called ‘control kernel’, which is a minimal set of

nodes for driving a synchronous BN into a desired attractor. Their

method is based on the construction of the full state transition graph

of the network and as such does not scale well for large networks.

Zhao et al. (2016) developed a network graph aggregation approach

to control synchronous BNs. These two methods, however, are not

applicable for asynchronous BNs. For the control of asynchronous

BNs, Za~nudo and Albert (2015) developed an extended period con-

trol method to identify a set of nodes based on the ‘stable motifs’

(SM) of the network to drive the network towards a desired target

attractor. For the problem of full control, Fiedler et al. (2013;

Mochizuki et al., 2013; Za~nudo et al., 2017) developed a method

for controlling networks, whose dynamics are governed by ordinary

differential equations (ODEs) by computing the feedback vertex set

(FVS) of the corresponding dependency graph. It is however unclear

how their method can be lifted to the discrete switch-like dynamics

of BNs.

The control strategies in the above and most of the methods

studied in the literature have one thing in common—the perturb-

ation is applied continuously for an extended period of time.

However, there are and can be obvious drawbacks to such a strat-

egy. For example, the concentration of the complexes (drugs,

viruses, etc.) applied for the perturbations might fall below the

requisite threshold over time in which case it needs to be adminis-

tered again and again to maintain appropriate levels. For example,

half-life or decay rates exist for almost any substance that is ever

added to cells—whether it is a drug or a nutrient or a virus—and

there will be degradation due to temperature, evaporation, depletion

by the cells. etc. This is discussed, for example in Michels and Frei

(2013) where they mention the decay of ascorbate in cell culture me-

dium. For the case of adding virus to cells, the depletion of active

virus in the cell culture dish happens relatively fast and can therefore

be a limiting factor for inserting a potential gene (say) into the target

cells via the virus. This typical issue of low transduction efficiency is

often counteracted by adding the virus to the cell repeatedly (e.g. see

Zhu et al., 2015). Such repeated administration of the virus is also

called for when the experimenter wants to target multiple cells in-

stead of just one (Charrier et al., 2011; Hofherr et al., 2017). The

phenomenon also occurs when inserting smaller copies of gene into

the cell without integrating it into the genome, which does not re-

quire the help of a virus. Even in such cases, the experimenter has to

try to add the gene-copies repeatedly since the genes are not attached

to the cell’s genome (Cervera et al., 2015). The repeated addition of

the complexes to the cell thus requires constant monitoring of the

system over an extended period of time. Furthermore, the complexes

themselves are difficult and expensive to acquire prohibiting their

extensive use.

Thus a more short-term control strategy might be well suited for

biological networks (Cornelius et al., 2013). In this work we explore

such a control strategy where the perturbation is applied for a single

time-step (read instantaneously) and the system is left to evolve on

its own, according to its original dynamics. For both versions of the

control problem, TC and FC, we develop a method to identify an

exact minimal set Cmin of nodes of a given Boolean network BN,

such that the above controls can be achieved by perturbing some of

the nodes in Cmin. Such short-term control strategies have been

studied in the literature (Cornelius et al., 2013), where a control

method based on simulations for large networks has been proposed.

Although the ideas presented in Cornelius et al. (2013) are quite

relevant to those we use here, their methods do not directly compare

to the ones that we develop in this work. Indeed, since first, they

deal with ODE networks, and not Boolean networks. And secondly,

since there does not yet exist ways to compute the basins of attrac-

tions of ODE networks, their method is based on simulations where

the search is automatically terminated if the system is not controlled

within a sufficiently large number of iterations. On the other hand,

we can indeed compute efficiently the attractors and basins of BNs

using methods developed in-house, and hence can compute the

‘exact’ minimal control for a given BN.

It is well-known that the precise identification of control param-

eters and control strategies of non-linear networks must exploit

both their structural and dynamic properties (Gates and Rocha,

2016). This rules out purely structure-based methods for identifying

the exact control subset, like that of Liu et al. (2011), which has

been shown to either overshoot or undershoot the control subset for

different networks (Gates and Rocha, 2016). The dynamics of a

Boolean network BN is given in terms of its transition system, which

as we already observed is exponential in the size of BN itself. Any

non-simulation-based algorithm that purely exploits this dynamics

by working on entire BN in one-go has to, in principle, work with

the full transition system, and thus has limited scalability. As the BN

grows in size, the number of possible behaviours (traces) grows ex-

ponentially with it (state-space explosion). This means that even any

simulation-based algorithm has to deal with a very large number of
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traces to preserve their guaranteed accuracy. This, in turn, limits

their efficiency as well.

Our algorithm takes the approach of ‘divide-and-conquer’

whereby it decomposes the network into smaller partitions, com-

putes the minimal set of control nodes in each of these partitions

and then composes the results to obtain the set Cmin for the whole

network. While doing the composition, the algorithm crucially

needs to check whether there exist subsets of Cmin that can be per-

turbed in the starting state that results in a state that belongs to the

‘basin of attraction’ of the target attractor(s), from which there only

exist paths towards the target attractor and there is no path leading

to any other attractor of the network. We therefore assume that the

algorithm is able to call the efficient procedure developed in Paul

et al. (2018) to compute the basin of attraction of an attractor of

BN. It is worth noting that our algorithm always computes an exact

minimal set of control nodes.

We have implemented our algorithm and tested it on a variety of

real-life biological networks modelled as BNs. We also compared

our results with the existing approaches for the control of non-linear

networks. For TC, we compared our method with the stable motifs

based control (SM) of Za~nudo and Albert (2015) and for FC, we

evaluate its performance without any comparison as, to the best of

our knowledge, no method for the full control of asynchronous BNs

exists in the literature. Our findings can be summarized as follows:

For TC, our method outperforms the SM based method in terms of

efficiency (for almost all the networks). For FC, our method can

compute the minimal full control set efficiently. The advantage of

our method is that we give the exact strategy to be applied for the

control given any source state and any target attractor. We particu-

larly note that, even for very large networks, the subset of control

nodes identified for both control strategies forms a relatively small

set which is a desirable property for the control of such networks.

2 Background and notations

Let N ¼ 1; 2; . . . ;nf g where n � 1. A Boolean network is a tuple

BN ¼ x; fð Þ where x ¼ x1; x2; . . . ; xnð Þ such that each xi is a Boolean

variable and f ¼ f1; f2; . . . ; fnð Þ is a tuple of Boolean functions over

x. In what follows, i will always range over N, unless stated other-

wise. A Boolean network BN ¼ x; fð Þ may be viewed as a directed

graph GBN ¼ V;Eð Þ, called the dependency graph of BN, where V ¼
v1; v2 . . . ; vnf g is the set of vertices or nodes (intuitively, vi corre-

sponds to the variable xi for all i) and for every i; j 2 N, there is a

directed edge from vj to vi, often denoted as vj ! vi, if and only if fi
depends on xj. Thus V is ordered according to the ordering of x. The

structure of BN refers to the structure of its dependency graph. For

any vertex vi 2 V, we let ind við Þ ¼ i be the index of vi in this order-

ing. For any subset W of V, ind Wð Þ ¼ ind vð Þj v 2W
� �

. For the rest

of the exposition, we assume an arbitrary but fixed network BN of n

variables is given to us and GBN ¼ V;Eð Þ is its associated dependency

graph.

A state s of BN is an element in 0; 1f gn. Let S be the set of states

of BN. For any state s ¼ s1; s2; . . . ; snð Þ, and for every i, the value of

si, often denoted as s i½ �, represents the value that the variable xi takes

when the BN ‘is in state s’. For some i, suppose fi depends on

xi1 ;xi2 ; . . . ; xik . Then fi sð Þ will denote the value fi s i1½ �; s i2½ �; . . . ;ð
s ik½ �Þ. For two states s; s0 2 S, the Hamming distance between s and

s0 will be denoted as hd s; s0ð Þ and arg hd s; s0ð Þð Þ � N will denote the

set of indices in which s and s0 differ. For a state s and a subset

S0 � S, the Hamming distance between s and S0 is defined as

hd s; S0ð Þ ¼ mins02S0hd s; s0ð Þ. We let arg hd s; S0ð Þð Þ denote the set of

subsets of N such that I 2 arg hd s; S0ð Þð Þ if and only if I is a set of in-

dices of the variables that realize hd s; S0ð Þ.
The behaviour of BN is captured by its evolution dynamics

which is defined as follows. Initially, BN is in a state s0 and its state

changes in every discrete time-step according to the update functions

f. In this work, we shall be exclusively concerned with the asyn-

chronous updating scheme but all our results transfer to the syn-

chronous updating scheme as well. Suppose s0 2 S is an initial state

of BN. The asynchronous evolution of BN is a function n : N! } Sð Þ
such that n 0ð Þ ¼ s0 and for every j � 0, if s 2 n jð Þ then s0 2 n jþ 1ð Þ,
is a possible next state of s, if and only if either hd s; s0ð Þ ¼ 1 and

s0 i½ � ¼ fi sð Þ where i ¼ arg hd s; s0ð Þð Þ or hd s; s0ð Þ ¼ 0 and there exists i

such that s0 i½ � ¼ fi sð Þ. Note that the asynchronous dynamics is non-

deterministic.

The dynamics of a Boolean network can be represented as a state

transition graph or a transition system (TS). The transition system of

BN, denoted by the generic notation TS is a tuple S;!ð Þ where the

vertices are the set of states S and for any two states s and s0 there is

a directed edge from s to s0, denoted s! s0, if and only if s0 is a pos-

sible next state of s. A path from a state s to a state s0 is a (possibly

empty) sequence of transitions from s to s0 in TS. A path from a state

s to a subset S0 of S is a path from s to any state s0 2 S0. For a state

s 2 S; reachTS sð Þ denotes the set of states s0 such that there is a path

from s to s0 in TS. An attractor A of TS (or of BN) is a minimal sub-

set of states of S such that for every s 2 A; reachTS sð Þ ¼ A. A state

which is not part of an attractor is a transient state. An attractor A

of TS is said to be reachable from a state s if reachTS sð Þ \ A 6¼1.

Attractors represent the stable behaviour of the BN according to the

dynamics. For an attractor A of TS, the basin of attraction of A,

denoted basTS Að Þ, is a subset of states of S such that s 2 basTS Að Þ if

reachTS sð Þ \ A 6¼1 and reachTS sð Þ \ A0 ¼1 for any attractor A0 6¼
A of BN. A control C is a (possibly empty) subset of N. For a state

s 2 S, the application of C to s, denoted C sð Þ, is defined as the state

s0 2 S such that s0 i½ � ¼ 1� s i½ �ð Þ if i 2 C and s0 i½ � ¼ s i½ � otherwise.

Henceforth, we shall drop the subscripts TS when no ambiguity

arises.

Control problems. Let BN be a given Boolean network, S be the

set of states of BN and A be the set of all its attractors. We are

interested in the following kinds of control on BN. Note that for us,

the control is applied in a single time-step (hence simultaneously) to

the current state s under consideration and the system is let to evolve

as per its original dynamics afterwards.

1. Source-target control (STC): Let s 2 S and let At 2 A be a target

attractor, A control Cs!At is an STC for s and At if, after the ap-

plication of Cs!At to s, BN eventually reaches At.

2. Target control (TC): Let At 2 A be a target attractor. A control

C!At is a TC for At if for any attractor As 2 A;As 6¼ At, and for

any state s 2 As, there exists a subset Cs of C!At such that Cs is

an STC of s for At.

3. Full control (FC): A control C is an FC for BN if for any pair of

attractors As;At 2 A;As 6¼ At, and for any state s 2 As, there

exists a subset Cs!At of C such that Cs!At is an STC of s for At.

Given the above kinds of control, we are interested in the follow-

ing control problems on a non-linear, asynchronous BN:

1. min-STC problem: Given BN, a source state s and a target at-

tractor At 2 A, find a minimal STC. Such an STC will be called

a min-STC and denoted as Cs!At

min .

2. min-TC problem: Given BN, and a target attractor At 2 A, find

a minimal TC. Such a TC will be called a min-TC and denoted as

C!At

min .
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3. min-FC problem: Given BN and the set of attractors A, find a

minimal FC for BN. Such a control will be called a min-FC and

denoted as Cmin.

In Paul et al. (2018), we developed a decomposition-based ap-

proach for the efficient solution to the min-STC problem [item (1)

above] for large BNs exploiting both their structure and dynamics.

We showed that the efficient computation of the minimal control

given a target attractor At boils down to the efficient computation of

the basin, bas Atð Þ of At. We therefore developed an algorithm for

the computation of bas Atð Þ by decomposing the BN into connected

components called blocks, computing the local basins of the projec-

tions of At to each of these blocks and then eventually merging these

local basins to obtain bas Atð Þ. We demonstrated both efficiency and

effectiveness of our approach on different real-life biological net-

works. In this work, we shall target the control problems (2) and (3)

listed above. Note that for control problem (3), we assume that the

set of attractors A of BN is already given to us. If however, A is not

known, we first need to compute A from BN for which we have al-

ready developed and implemented efficient procedures (see e.g.

Mizera et al., 2017, 2018; Yuan et al., 2016). In the algorithms that

we develop here, we shall use the procedure to compute the basin of

a given attractor A of a given Boolean network developed in Paul

et al. (2018) and shall refer to it as Compute_Basin(A).

3 Results

Towards the solution of control problems 2 and 3 above, we first de-

fine a generic control problem which we call the Minimal All-Pairs

Control.

• Minimal All-Pairs Control (min-APC): Let A be the set of all

attractors of BN and let As;At � A be subsets of attractors,

called source and target attractors respectively. A control CAs!At

is an APC for As and At if for any pair of attractors As 2
As;At 2 At;As 6¼ At and any state s 2 As, there exists Cs!At �
CAs!At such that Cs!At is an STC of s for At. An APC which is

minimal is called a min-APC and is denoted as CAs!At

min . The min-

APC problem is then: given BN;As and At, find a min-APC.

The control problems min-TC and min-FC are special cases of

the min-APC problem when At is a singleton and when

As ¼ At ¼ A, respectively.

We first observe that the min-APC problem is computationally

at least as hard as the min-STC problem. Indeed, since the min-STC

problem for a source state s and a target attractor At, where s is a

fixpoint attractor, is a special case of the min-APC problem where

As ¼ sf gf g and At ¼ Atf g. Since min-STC is already hard for

PSPACE (Mandon et al., 2016; Paul et al., 2018), efficient solutions

for min-APC are highly unlikely.

To gain an intuition into the problem, suppose all the attractors

in As are singleton states (fixed points). Suppose, As ¼ sf g 2 As is a

source attractor and At 2 At is a target attractor. It can be easily

observed that the BN eventually and surely reaches At following the

update dynamics, after a control C is applied to s, if and only if

C sð Þ 2 bas Atð Þ (Paul et al., 2018). Also, for any state t 2 bas Atð Þ,
the number of nodes to perturb to move from s to t is hd s; tð Þ and

these nodes are given as arg hd s; tð Þ
� �

. So, let M be a jAsj � jAtj ma-

trix such that for every pair of attractors As 2 As and At 2 At, the

(As, At)th entry of M; M As;At½ � is a set of subsets of N such that for

any subset Z � N; Z 2 M As;At½ � if and only if there exists t 2
bas Atð Þ such that Z ¼ arg hd s; tð Þ

� �
. CAs!At

min is then a minimal subset

of N such that there exists a subset of CAs!At

min in M As;At½ � for every

pair of attractors As 2 As and At 2 At.

The following example illustrates the problem in details.

Example 1. Consider a Boolean network BN ¼ x; fð Þ where x ¼
x1;x2; x3;x4ð Þ and f ¼ f1; f2; f3; f4ð Þ where f1 ¼ f2 ¼ x1 and

f3 ¼ f4 ¼ x1 _ x2 ^ x4ð Þ _ x3. The dependency graph of BN and its

TS is shown in Figure 1. We suppress the self loops present in each

of the states of the TS to avoid clutter. It has 3 single-state attractors

A ¼ A1;A2;A3f g shown as dark grey nodes, where

A1 ¼ 0000f g;A2 ¼ 0011f g;A3 ¼ 1111f g. The basins of attractions

of the respective attractors are shown as shaded grey regions.

Table 1 shows the matrix M that notes the indices of the varia-

bles that need to be changed to move from an attractor As in A to

the basin of another attractor At in A. From M we see that both the

sets {1, 2, 3} and {1, 3, 4} are min-FCs. However, {2, 3, 4}, for ex-

ample, is not a min-FC since it is not possible to move to the basin

of A1 from A3 by perturbing only v2, v3 and v4.

(a)

(c)

(b)

Fig. 1. (a) Boolean functions, (b) dependency graph and (c) TS for Example 1.

The basins of attractions of the respective attractors are shown as shaded

grey regions

Table 1. The matrix showing the indices to be controlled for pairs

of attractors

A1 A2 A3

A1 1 {{3}, {2, 3}, {3, 4},

{2, 3, 4}}

{{1}, {1, 2}, {1, 3},

{1, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3,

4}, {1, 2, 3, 4}}

A2 {{3}, {3, 4}, {2, 3,

4}}

1 {{1}, {1, 2}, {1, 3},

{1, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3,

4}, {1, 2, 3, 4}}

A3 {{1, 2, 3}, {1, 3, 4},

{1, 2, 3, 4}}

{{1}, {1, 2}, {1, 4},

{1, 2, 4}}

1
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We propose an algorithm based on the approach of ‘divide-and-

conquer’ wherein we decompose the network into smaller partitions

and solve the min-APC problem on these partitions. We then com-

bine the results to obtain the control set for the entire network. We

show that using such an approach, we can solve the problem on

large Boolean networks arising from real-life biological systems

much more efficiently compared with a global approach that works

on the entire network in a single go. Towards that, we first need the

notion of projection of a state to a subset of nodes of BN.

Let V 0 ¼ fvi1 ; vi2 ; . . . ; vikg be a subset of V, the projection of s to

V 0, denoted sjV 0 is an element of f0;1gk defined as

sjV 0 ¼ ðs½i1�; s½i2�; . . . ; s½ik�Þ. The projection operation is lifted to a

subset S0 of S as S0jV 0 ¼ fsjV 0 j s 2 S0g. A decomposition of BN is

defined as a partitioning V1;V2; . . . Vk of V. Each Vj; 1 � j � k

will be called a partition of BN. For any attractor A 2 A and for any

partition Vj, AjVj
and basðAÞjVj

are well-defined. Given sets of

source and target attractors As and At, respectively, and a partition

Vj, C
j � indðVjÞ is an APC on Vj if it satisfies the all-pairs control

properties on BN projected to Vj. That is, for all As 2 As and At 2
At; As 6¼ At implies for all s 2 As, there exists C � Cj such that

CðsjVj
Þ 2 basðAtÞjVj

. The idea of the algorithm is based on the fol-

lowing proposition.

Proposition 1. Let As and At be sets of source and targets attrac-

tors of BN and let V1;V2; . . . ;Vk be a decomposition of V. If CAs!At

min

is a min-APC of BN then ðCAs!At

min \ indðVjÞÞ is a min-APC on

partition Vj for all 1 � j � k. Furthermore, CAs!At

min ¼
[1� j� kðCAs!At

min \ indðVjÞÞ.
Proof. Suppose that CAs!At

min is an APC of BN. Then by definition,

for every pair of attractors As 2 As and At 2 At, and for all s 2 As,

there exists Cs � CAs!At

min such that CsðsÞ 2 basðAtÞ. This implies,

for every partition Vj, ðCs \ indðVjÞÞðsjVj
Þ 2 basðAtÞjVj

. Now, it

must hold that ðCAs!At

min \ indðVjÞÞ ¼ [As2As ;At2At

[s2As
ðCs \ indðVjÞÞ. Thus, by definition, ðCAs!At

min \ indðVjÞÞ is an

APC on Vj. Moreover, since the partitions are mutually disjoint, we

have CAs!At

min ¼ [1� j�kðCAs!At

min \ indðVjÞÞ.

Next, suppose CAs!At

min is also a minimal APC of BN but there

exist some V‘ such that ðCAs!At

min \ indðV‘ÞÞ is not a minimal APC on

V‘. Let C‘ be a minimal APC on V‘ such that jC‘j <
jCAs!At

min \ indðV‘Þj. Then, from above, we have that there is another

control Ĉ
As!At

min ¼ ð[1� j� k;j 6¼‘ðCAs!At

min \ indðVjÞÞ [ C‘Þ which is a

minimal APC of BN and jĈAs!At

min j < jCAs!At

min j, since the partitions

are mutually disjoint. But this contradicts the minimality of CAs!At

min .

3.1 Main algorithm
We now describe our Algorithm 1, to solve the min-APC problem.

The algorithm takes as input the functions of a Boolean network

BN, sets of source and target attractors As and At and the size m of

partitions that BN will be decomposed into and works as follows. It

first computes and stores the basins of attractors of the attractors in

At using the procedure Compute_Basin developed in Paul et al.

(2018). It randomly decomposes BN into k ¼ jVj=md e partitions

V1;V2; . . . Vk each of size at most m (line 2 of Algorithm 1). For

each partition Vj it computes the set of min-APCs, CMIN
j
0, on Vj

using the helper function Min_Control (line 4). Let r ¼
Pk

j¼1 jC
jj

where Cj 2 CMIN
j
0. By Proposition 1, we know that the size of a

min-APC, CAs!At

min for BN is at least r. The algorithm chooses one

min-APC from each partition and checks if their union is a valid

APC on the entire network BN by using the helper function

Is_Control which queries the basins of attractions of the target

attractors already computed. This is done in lines 8–14. If it cannot

find an APC of size r, it increases the value of r by 1 and repeats the

process: for each partition Vj it computes the set of APCs of the next

larger size on Vj using the helper function Fixed_Control (line 18). It

checks if there is a union of APC from each of the partitions the sizes

of which sum to the new value of r and such that it forms a valid

APC on BN. It repeats this process each time increasing the value of

r by 1 till it finds a min-APC for BN, CAs!At

min (lines 15–20). The cor-

rectness of the algorithm is therefore trivially guaranteed.

Algorithm 1. All-pairs control

1: procedure All_Pairs_Control (BN ¼ ðx; fÞ;As;At ;m)

2: i :¼ 0;APC :¼ fg; k :¼ n=md e; partitions :¼ fV1;V2; . . . ;Vkg
3: for j in [1, k] do //initialize CMINj

0 for all j

4: CMINj
0 :¼Min_ControlðBN;As;At;VjÞ //min full control for Vj

5: size minðjÞ :¼ jCjjwhere Cj 2 CMINj
0 //minimum size of the control set on Vj

6: end for

7: while APC ¼ fg do

8: for a1; . . . ; ak � 0 such that a1 þ � � � þ ak ¼ i do

9: possAPC :¼ fC1 [ . . . [ CkjCi 2 CMINðiÞai
; i 2 f1; . . . ; kgg //for all possible controls of combined size i

10: for C 2 possAPC do

11: if Is_Control(C; BN;As;At) then APC :¼ APC [ fCg //check if it is a valid APC for BN

12: end if

13: end for

14: end for

15: if APC ¼ fg then //if a valid APC for BN has not yet been found

16: i iþ 1; //increase the size of the potential APC by 1

17: for j¼ 1 to k do

18: CMINj
i :¼Fixed_ControlðBN;As;At ;Vj; size minðjÞ þ iÞ //look for an APC of the new size

19: end for

20: end if

21: end while

22: return APC

23: end procedure
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We next describe the procedures Min_Control, Is_Control and

Fixed_Control (Algorithm 2) used in Algorithm 1. We assume that

the basins for all the attractors in At has been computed using the

procedure Compute_Basin developed in Paul et al. (2018) and

stored in an appropriate global data structure and can be accessed

by all these procedures. For At 2 At; basðAtÞ will denote the basin

of At as computed using Compute_Basin.

Min_Control takes as input the description of the Boolean net-

work, the sets of the source and the target attractors and a partition

Vj and it returns the min-APCs on partition Vj. To do that it first

computes the projection to Vj of every state s 2 As for every As 2 As

and of every At 2 At. Then for i from 0 to jVjj, it checks if any sub-

set C of indðVjÞ of size i satisfies the APC properties on Vj. That is, if

for all As 2 As and At 2 At; As 6¼ At implies for all

s 2 As; CðsjVj
Þ 2 basðAtÞjVj

. It returns all such subsets of size i (for

the lowest value of i) and exits.

The procedure Fixed_Control is similar to Min_Control except

that it returns an APC on Vj of size size minðjÞ þ i if it exists.

Otherwise, it returns the empty set.

Is_Control checks if the given subset C is indeed an APC for As

and At. It does so by verifying if for all As 2 As and all s 2 As and

for all At 2 At; As 6¼ At, there exists a subset Cs of C such that

CsðsÞ 2 basðAtÞ.
As explained in Section 3, TC and FC are special cases of the

APC problem. Thus, we compute C!At

min and Cmin with Algorithm 1

by setting At ¼ At and As ¼ At ¼ A, respectively.

We explain the working of Algorithm 1 here with a representa-

tive example.

Example 2. Continuing with the Boolean network of Example 1,

suppose now that we divide the vertices V of BN into two partitions,

V1 ¼ fv1; v2g and V2 ¼ fv3; v4g. The projections to these partitions

of the attractors in A and their respective basins are given in Table

2.

The algorithm works as follows. In Step 1, it computes the min-

APC sets for the projections to the partitions V1 and V2 as C1
1 ¼

ff1gg and C1
2 ¼ ff3gg, respectively. Combining C1

1 and C1
2 we get

{1, 3} but the check Is_Control returns that {1, 3} is not a valid full

control for the whole network. So the algorithm moves to Step 2,

Algorithm 2. Helper functions

1: procedure Min_Control (BN;As;At;Vj)

2: CMINj :¼ fg;max ¼ jVjj; success :¼ TRUE

3: for i¼ 0 to max do

4: for C � indðVjÞ; jCj ¼ i do //for all subsets C of size at most max of the indices in Vi

5: for As 2 As;At 2 At ;As 6¼ At do

6: for s 2 As do

7: if :ð9C0 � C;C0ðsjVj
Þ 2 basðAtÞjVj

Þ then success:¼ FALSE //check if there exists a subset of C such that applying it to

8: end if //the projection of s to Vj results in a state in the projection

9: end for //of basðAtÞ to Vj

10: end for

11: if success ¼ TRUE then

12: CMINj :¼ CMINj [ fCg; max :¼ jCj //if a control has been found, max is set to its size

13: end if

14: end for

15: end for

16: return CMINj

17: end procedure

18: procedure Fixed_Control(BN;As;At;Vj;m)

19: CMINj :¼ fg; success :¼ TRUE

20: for C � indðVjÞ; jCj ¼ m do //the potential control is of a fixed size m

21: for As 2 As;At 2 At ;As 6¼ At do

22: for s 2 As do

23: if :ð9C0 � C;C0ðsjVj
Þ 2 basðAtÞjVj

Þ then success :¼ FALSE

24: end if

25: end for

26: end for

27: if success ¼ TRUE then CMINj :¼ CMINj [ fCg //a valid control on Vj has been found

28: end if

29: end for

30: return CMINj

31: end procedure

32: procedure Is_Control (C;BN;As;At)

33: success :¼ TRUE

34: for As 2 As;At 2 At;As 6¼ At do

35: for s 2 As do

36: if :ð9C0 � C;C0ðsÞ 2 basðAtÞÞ then success :¼ FALSE //check if there is a subset of C which is a valid APC on BN

37: end if

38: end for

39: end for

40: return success

41: end procedure

Controlling large Boolean networks i563

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i558/5529125 by U
N

IVER
SITE D

E PAR
IS (U

D
P) user on 03 February 2023



where it looks for controls of size 3. For that it needs to find APCs

of size 2 in the projections to each of the partitions V1 and V2 and

check the combinations of these and the controls C1
1 and C1

2 com-

puted in Step 1, to find a control for the whole network. The APCs

of size 2 that it finds for the two partitions in Step 2 are C2
1 ¼

ff1; 2gg and C2
2 ¼ ff3; 4gg. Combining C1

1 and C2
2 we get {1, 3, 4}

and combining C1
2 and C2

1 we get {1, 2, 3} both of which are valid

APCs for BN which are also FCs in this example. Hence, the size of

a minimum FC is 3.

Remark. We make a quick remark on the computational com-

plexity of our algorithm. Note that the algorithm can, in the worst

case, take time exponential in the size of its input, which is the BN,

the source and target attractors and the partition size. One way in

which this can happen is, for example, when Is_Control in line 11 of

Algorithm 1 returns FALSE for exponentially many potential con-

trols before finding a valid APC. This, in turn, occurs when although

each of the local controls C1;C2; . . . ;Ck are valid APCs on the parti-

tions V1;V2; . . . ;Vk but their union C is not a valid APC for the en-

tire BN (the resulting state does not belong to the strong basin of

some target attractor in At). However, as we see in Section 4, such a

case is extremely rare for BNs constructed for real-life biological

networks. For such networks, Is_Control succeeds to find a valid

APC within 2–3 iterations. This makes our procedure quite efficient

on such networks.

4 Evaluation

As discussed in Section 1, the control method based on the computa-

tion of stable motifs (SM) (Za~nudo and Albert, 2015) is a method of

control applied for an extended period for the target control of asyn-

chronous BNs. In this section, we compare our single-step control

method for the min-TC problem (which we simply call TC) with SM

even though the control computed by our method is applied only for

a single time-step. Regarding the full control of asynchronous BNs,

as we are not aware of any previous work in the literature that deals

with the exactly same problem, we simply evaluate the performance

of our method to compute the min-FC of a BN (which we simply

call FC henceforth) to demonstrate its potential.

We apply these methods to 10 biological networks (Cohen et al.,

2015; Conroy et al., 2014; Grieco et al., 2013; Kim et al., 2013;

Naldi et al., 2010; Offermann et al., 2016; Remy et al., 2015; Saez-

Rodriguez et al., 2007; Schlatter et al., 2009; Singh et al., 2012).

Our methods for the computation of min-TC and min-FC are imple-

mented as part of the software tool ASSA-PBN (Mizera et al.,

2018). All the experiments are performed on a computer with a

CPU of Intel Core i7 @3.1 GHz and 8 GB of DDR3 RAM.

Description of the networks. We first describe the networks

under study.

• The myeloid differentiation network is designed to model mye-

loid differentiation from common myeloid progenitors to mega-

karyocytes, erythrocytes, granulocytes and monocytes (Krumsiek

et al., 2011). This network has 11 nodes and 6 attractors, 4 of

which agrees with microarray expression profiles of two different

studies.
• The tumour network is built to study the role of individual muta-

tions or their combinations in the metastatic process (Cohen

et al., 2015). This network contains 32 nodes and 9 attractors,

which are consistent with Cohen et al. (2015).
• The PC12 cell network models the temporal sequence of protein

signalling, transcriptional response and subsequent autocrine

feedback (Offermann et al., 2016). It has 33 nodes and 7

attractors.
• The bladder cancer network allows one to identify the deregu-

lated pathways and their influence on bladder tumourigenesis

(Wang et al., 2012). It has 35 nodes. When the input nodes

EGFR_stimulus and Growth_inhibitors are set to ON and

DNA_damage is set to OFF, the network has four attractors:

three correspond to growth arrest and one corresponds to cell

proliferation.
• The MAPK network is constructed to study the MAPK responses

to different stimuli and their contributions to cell fates (Grieco

et al., 2013). In this paper, we use the MPAK mutant r3, which

has 53 nodes and 20 attractors.
• The model for HGF-induced keratinocyte migration captures the

onset and maintenance of hepatocyte growth factor-induced mi-

gration of primary human keratinocytes (Singh et al., 2012). It

has 66 nodes and 18 attractors.
• The Th-cell differentiation network models the regulatory net-

work and the signalling pathways controlling Th-cell differenti-

ation (Naldi et al., 2010). It consists of 68 nodes and 12

attractors with the same initial condition as mentioned in Naldi

et al. (2010).
• The model of T-cell receptor signalling describes the complex sig-

nalling network governing the activation of T-cells via several

receptors, including the T-cell receptor, the CD4/CD8 co-

receptor, and the accessory signalling receptor CD28 (Saez-

Rodriguez et al., 2007). It has 95 nodes and 16 attractors are

detected under certain conditions.
• The apoptosis network captures the central intrinsic and extrin-

sic apoptosis pathways and the pathways connected with them

(Schlatter et al., 2009). It has 97 nodes and 32 attractors when

the nodes FASL_2, IL_1, TNF, UV, UV_2, FASL are fixed to

OFF.
• The CD4þ T-cell network allows us to study the downstream

effects of CAV1þ/þ, CAV1þ/� and CAV1�/� on cell signalling

and intracellular networks (Conroy et al., 2014). This network is

comprised of 188 nodes and 12 attractors under certain initial

conditions.

An overview of the networks is given in Table 3. (We refer the

sizes of the basins of attractors to the Supplementary Material.)

Selection of the partition size. We perform experiments on the

biological networks described above to find out the best size of par-

titions for TC and FC. Since TC is a special case of FC, we only per-

form experiments for FC by setting the maximum size of a partition

from 1 to 20 and comparing the time costs.

Figure 2 shows the normalized time costs with different sizes of

partitions for the 10 networks. When the size equals 3, FC has the

best efficiency for most of the networks. Hence, we set the partition

size m¼3 except for the TC of HGF-induced keratinocyte migra-

tion, which is explained later.

Effectiveness. As illustrated in Proposition 1, our computation

methods TC and FC identify the minimal control sets for single-step

control. SM is an extended period control and it does not guarantee

Table 2. The projections of the attractors and basins to V1 and V2

V1 ¼ fv1; v2g V2 ¼ fv3; v4g

Attractor Basin Attractor Basin

00 00, 01 00 00, 01

00 00, 01 11 11, 10

11 11, 10 11 11,10,01,00
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the minimality of the control sets as mentioned in Za~nudo and

Albert (2015).

Table 3 gives the sizes of the control sets computed by the three

methods. It is worth noting that SM may capture unnecessary nodes.

Taking the myeloid differentiation network as an example, Figure 3

gives the control nodes required by TC and SM to drive the network

towards one of the attractors. The grey rectangular node—required

by SM solely—has the same value in all the attractors, thus there is

no need to control it.

Columns CTC
min and CSM are the number of driver nodes for one

of the attractors computed by TC and SM. We can see that the

results computed by the two methods are very close (see column \
in Table 3). Compared with SM, TC may lead to slightly larger con-

trol sets, like in the results of the Th-cell differentiation network and

the CD4þ T-cell network, due to the application of different control

strategies—SM focuses on extended period control while we use

single-step control. Despite that, the number of control nodes for

single-step control are still small relative to the sizes of the

networks.

The column CFC
min describes the number of driver nodes required

for the full control of the networks. For most of the networks, CFC
min

is much larger than CTC
min. Three large networks (the T-cell network,

the apoptosis network and the CD4þ T-cell network) have small

control sets because the attractors are caused by few nodes. For in-

stance, the 32 attractors of the apoptosis network result from all

combinations of values of five input nodes, i.e. 25. Even though it

has 97 nodes and 32 attractors, by controlling the five input nodes,

we can gain full control of the network.

Efficiency. Table 4 gives the execution time of the three methods.

Note that the partition size m only has influence on T
CTC

min
and T

CFC
min

.

The attractors and their basins are computed with methods in

Mizera et al. (2019) and Paul et al. (2018) and their computation

time may increase as the sizes of the networks increase.

T
CTC

min
and TCSM

are the total time costs for computing the target

control sets for all attractors of the networks. In general, our compu-

tation method TC outperforms SM in terms of efficiency for most of

the networks. For the CD4þ T-cell network, SM is faster than our

method on attractor detection, mainly due to the fact that this net-

work is sparse and has a simple structure. But this is rare for bio-

logical networks, as they are necessarily dense to performs

remarkably robust regulatory tasks (Adai et al., 2004; Blanchini and

Franco, 2011).

The TCTC
min

of HGF-induced keratinocyte migration shows that the

iteration of Algorithm 1 (lines 7–21) can be very time consuming.

Taking one of the attractors as an example, the initial r ¼
Pk

j¼1 jC
jj

is 13 and CTC
min is of size 19. This implies that we need to traverse all

solutions of size 13–19 to find CTC
min and there may exist a consider-

able number of such solutions. According to extensive experiments,

a larger m leads to a larger initial C, which reduces the number of

iterations. However, a larger m also increases the time for the com-

putation of CMIN0. So m is the critical parameter in our control

Fig. 2. Influence of the block size on the efficiency of FC

Fig. 3. The results of TC and SM on the myeloid differentiation network

Table 4. The time costs of the three control methods (TC, FC and

SM)

Network TC and FC SM

Tatt Tbas T
CTC

min
T
CFC

min
Tatt TCSM

Myeloid 0.002 0.004 0.004 0.001 6.989 7.846

Tumour 0.622 1.009 0.177 0.028 * *

PC12 0.019 0.146 0.017 0.009 97.211 263.249

Bladder 0.881 0.318 0.813 0.745 26.955 32.587

MAPK 2.175 9.409 0.404 0.270 53.354 436.898

HGF 2.552 23.571 860.776 1.164 104.447 *

Th-diff 3.664 17.347 0.824 0.282 121.821 400.043

T-cell 2.170 14.762 0.565 0.335 58.418 9.967

Apoptosis 11.285 1230.200 1.778 1.045 222.241 55.578

CD4þ 182.185 948.667 1.850 1.613 60.525 30.894

Note: Units of time are in seconds.

Table 3. An overview of the networks and a comparison of the

three methods on the control sets

Network Nodes Edges Attractors CTC
min CSM \ CFC

min

Myeloid 11 30 6 3 3 2 8

Tumour 32 158 9 2 * * 14

PC12 33 62 7 1 1 1 15

Bladder 35 116 4 1 1 1 16

MAPK 53 105 20 4 4 4 20

HGF 66 103 18 4 * * 34

Th-diff 68 175 12 3 2 2 17

T-cell 95 159 16 4 4 4 4

Apoptosis 97 192 32 5 5 5 5

CD4þ 188 380 12 4 3 3 5

Note: \ represents the overlaps between CTC
min and CSM: The symbol ‘*’

means the method fails to compute the results within 12 h.
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algorithms and has to be properly chosen. For this network, TC has

the best efficiency when m¼10.

Finally, the numbers for TCFC
min

in Table 4 also show that our

method is very efficient and scales well even for large-scale

networks.

5 Conclusion

In this work, we have described a method to identify a minimal set

of nodes Cmin, by perturbing which, for a single time-step, the net-

work can be driven from any initial state in a source attractor to any

target attractor. This method is adapted to solve the target control

and full control of large-scale BNs. Compared with the traditional

methods of control where the perturbation is applied for an

extended period, such a control strategy is also realistic and easier to

carry out in biological lab experiments. We showed that our method

is efficient and the nodes required to control the network form a

small subset of the set of all nodes in the network.

In the future, as a continuation of the current work, we would

like to apply our control algorithm to larger real-life biological net-

works and study its performance and applicability. As mentioned in

Section 4, we found that the size of the partitions, m, has a big influ-

ence on the efficiency of our method. We would like to explore

whether this is caused by a structural, or dynamic property of the

network or a combination of the two. We would also like to extend

our work to the setting of probabilistic Boolean networks (PBNs)

and explore if and how to adapt the single-step control strategy to

such networks and design efficient algorithms for their

implementation.
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