Clique percolation method: memory efficient almost exact communities

Alexis Baudin, Maximilien Danisch, Sergey Kirgizov, Clémence Magnien. Marwan Ghanem 2-4 February 2022

The 17th International Conference on Advanced Data Mining and Applications (ADMA), Sydney, Australia (2021)

Contents

Parts of the presentation:

- 1. Communities in a graph
- 2. Clique Percolation Method (CPM) Definition
- 3. Exact and Approximate algorithms
- 4. Conclusion

Community:

- Densely connected inside
- Sparsly connected outside

Palla et al. 2005

Community:

- Densely connected inside
- Sparsly connected outside

Interest:

- Massive graph : zoom in and out
- Biological interactions
- Content recommendation
- ..

Palla et al. 2005

Scaling up to massive graph

k-clique

Set of *k* nodes all connected to each other.

k-clique

Set of *k* nodes all connected to each other.

k-clique

Set of k nodes all connected to each other.

Adjacent k-cliques

k-clique

Set of *k* nodes all connected to each other.

Adjacent k-cliques

k-clique

Set of k nodes all connected to each other.

Adjacent k-cliques

k-clique

Set of k nodes all connected to each other.

Adjacent k-cliques

k-clique

Set of k nodes all connected to each other.

Adjacent k-cliques

k-clique

Set of k nodes all connected to each other.

Adjacent k-cliques

CPM Community

Maximal set of adjacent k-cliques.

CPM Community

Maximal set of adjacent k-cliques.

Literature

- Palla et al. 2005 : first definition
- Kumpula et al. 2008 : based on k-clique enumeration
- Reid et al. 2012 : based on maximal clique enumeration
- Gregori et al. 2013 : parallel version, based on maximal cliques

Exact and approximate algorithms

$$k = 4$$

$$(1,2,3) \to 2$$

$$(1,2,4) \to 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4)\rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \to 2$$

$$(2,3,5) \rightarrow \times$$

$$(2,4,5) \rightarrow \times$$

$$\text{(2,7,8)} \rightarrow \times$$

$$(3,4,5) \to 1$$

$$(3,4,6) \to 1$$

$$(3,5,6) \rightarrow 1$$

$$(4,5,6)\rightarrow 1$$

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

$$(1,2,4) \to 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \rightarrow 2$$

$$(2,3,5) \rightarrow \times$$

$$(2,4,5) \rightarrow \times$$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 1$$

$$(3,4,6) \to 1$$

$$\textbf{(3,5,6)} \rightarrow \textbf{1}$$

$$\textbf{(4,5,6)} \rightarrow \textbf{1}$$

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

 $(1,2,4) \rightarrow 2$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8)
ightarrow imes (2,3,4)
ightarrow 2 \ (2,3,5)
ightarrow imes (2,4,5)
ightarrow i$$

$$(2,3,4) \rightarrow 2$$

 $(2,3,5) \rightarrow \times$

$$(2,3,3) \rightarrow \times$$

 $(2,4,5) \rightarrow \times$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 1$$

$$(3,4,6) \to 1$$

$$\textbf{(3,5,6)} \rightarrow \textbf{1}$$

$$(\mathbf{4},\mathbf{5},\mathbf{6})\to\mathbf{1}$$

$$k = 4$$

$$(1,2,3)\to 2$$

$$(1,2,4) \to 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \rightarrow 2$$

$$(2,3,5) \rightarrow \times$$

$$(2,4,5) \rightarrow \times$$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 1$$

$$(3,4,6) \to 1$$

$$\textbf{(3,5,6)} \rightarrow \textbf{1}$$

$$(4,5,6) \to 1$$

$$k = 4$$

$$(1,2,3)\rightarrow 2$$

$$(1,2,4) \to 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \to 2$$

$$(2,3,5) \to 2$$

$$(2,4,5)\rightarrow 2$$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

$$k = 4$$

$$(1,2,3)\to 2$$

$$(1,2,4)\rightarrow 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \to 2$$

$$(2,3,5)\rightarrow 2$$

$$(2,4,5)\rightarrow 2$$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

$$(1,2,4)\rightarrow 2$$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \rightarrow 2$$

$$(1,7,8) \rightarrow \times$$

$$(2,3,4) \rightarrow 2$$

$$(2,3,5) \to 2$$

$$(2,4,5)\rightarrow 2$$

$$(2,7,8) \rightarrow \times$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

 $(1,2,4) \rightarrow 2$

$$(1,2,7) \rightarrow \times$$

$$(1,2,8) \rightarrow \times$$

$$(1,3,4) \to 2$$

$$(1,7,8) \rightarrow \times$$

$$\textbf{(2,3,4)} \rightarrow 2$$

$$(2,3,5) \to 2$$

$$(2,4,5)\rightarrow 2$$

$$\textbf{(2,7,8)} \rightarrow \times$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

Exemple:

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

 $(1,2,4) \rightarrow 2$
 $(1,2,7) \rightarrow 3$
 $(1,2,8) \rightarrow 3$

 $(1,3,4) \rightarrow 2$

$$(1,7,8) \rightarrow 3$$
 $(2,3,4) \rightarrow 2$
 $(2,3,5) \rightarrow 2$
 $(2,4,5) \rightarrow 2$
 $(2,7,8) \rightarrow 3$

$$(3,4,5) \rightarrow 2$$

 $(3,4,6) \rightarrow 2$
 $(3,5,6) \rightarrow 2$
 $(4,5,6) \rightarrow 2$

$$k = 4$$

$$(1,2,3) \rightarrow 2$$

$$(1,2,4) \to 2$$

$$(1,2,7) \to 3$$

$$(1,2,8) \rightarrow 3$$

$$(1,3,4) \to 2$$

$$(1,7,8) \to 3$$

$$(2,3,4) \to 2$$

$$(2,3,5) \to 2$$

$$(2,4,5)\rightarrow 2$$

$$(2,7,8)\rightarrow 3$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

Exemple:

$$k = 4$$

$$(1,2,3)\rightarrow 2$$

$$(1,2,4)\rightarrow 2$$

$$(1,2,7) \rightarrow 3$$

$$(1,2,8) \to 3$$

$$(1,3,4) \to 2$$

$$(1,7,8) \to 3$$

$$(2,3,4) \rightarrow 2$$

$$(2,3,5) \to 2$$

$$(2,4,5) \to 2$$

$$(2,7,8)\rightarrow 3$$

$$(3,4,5) \to 2$$

$$(3,4,6) \to 2$$

$$\textbf{(3,5,6)} \rightarrow 2$$

$$(4,5,6) \to 2$$

7 / 11

• Update with Union-Find datastructure

$$k = 4$$

$$(1,2,3)\rightarrow 2$$

$$(1,2,4) \to 2$$

$$(1,2,7)\rightarrow 3$$

$$(1,2,8)\rightarrow 3$$

$$(1,3,4) \to 2$$

$$(1,7,8) \to 3$$

$$(2,3,4) \rightarrow 2$$

$$(2,3,5) \rightarrow 2$$

$$(2,4,5) \to 2$$

$$\textbf{(2,7,8)} \rightarrow \textbf{3}$$

$$(3,4,5) \to 2$$

$$(3,4,6) \rightarrow 2$$

$$(3,5,6)\rightarrow 2$$

$$(4,5,6)\rightarrow 2$$

- Update with Union-Find datastructure
- Complexity per k-clique : $C_k \approx \mathcal{O}(k)$

Approximate Algorithm

Limit on massive graphs

Massive graph: the larger k is, the more k-cliques there are.

We work on $k \sim 3 - 15$.

Reduce memory

- Exact algorithm : Store all (k-1)-cliques.
- Approximate algorithm : Store all \underline{z} -cliques, z < k 1.

Principle of the Approximate Algorithm

(k-1)-clique \approx the set of its *z*-cliques.

Approximate Algorithm

Example:

$$k = 4, z = 2$$

$$\begin{array}{c|cccc} (1,2) \to \{2,3\} & & (1,8) \to \{3\} & & (2,7) \to \{3\} \\ (1,3) \to \{2\} & & (2,3) \to \{2\} & & (2,8) \to \{3\} \\ (1,4) \to \{2\} & & (2,4) \to \{2\} & & (3,4) \to \{2\} \\ (1,7) \to \{3\} & & (2,5) \to \{2\} & & (3,5) \to \{2\} \\ \end{array}$$

$$(3,6) \rightarrow \{2\}$$

 $(4,5) \rightarrow \{2\}$
 $(4,6) \rightarrow \{2\}$
 $(5,6) \rightarrow \{2\}$
 $(7,8) \rightarrow \{3\}$

- Update with Union-Find datastructure
- ullet Complexity per k-clique : $\mathcal{C}_k pprox \mathcal{O}\left(k\cdot {k-1\choose z}\right)$

Exact and approximate algorithms

Result of Approximate Algorithm

Some exact communities are merged together.

Accuracy between Exact and Approximate Algorithm

Tool: ONMI (McAid et al 2013)

On all the experiments:

$$z = 2$$
 > 93.8%

Mean: 98.6%

Median: 99.4%

$$z = 3$$
 > 99.5%

Mean:99.95%

Median: 100%

Conclusion

Conclusion

Conclusion

- Exact algorithm, gain of time;
- Almost exact algorithm, gain of memory
 - \Rightarrow best scale;
 - \Rightarrow accurate approximate communities.

Conclusion

Conclusion

- Exact algorithm, gain of time;
- · Almost exact algorithm, gain of memory
 - \Rightarrow best scale:
 - \Rightarrow accurate approximate communities.

Perspectives

- can bad merges of communities be avoided?
- order of k-cliques on the accuracy of the result;
- link streams;